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Abstract. In this note we sharpen the lower bound from [LLP10]
on the spectrum of the 2D Schrödinger operator with a δ-interaction
supported on a planar angle. Using the same method we obtain the
lower bound on the spectrum of the 2D Schrödinger operator with a
δ-interaction supported on crossing straight lines. The latter operators
arise in the three-body quantum problem with δ-interactions between
particles.

1. Introduction

Self-adjoint Schrödinger operators with δ-interactions supported on suf-
ficiently regular hypersurfaces can be defined via closed, densely defined,
symmetric and lower-semibounded quadratic forms using the first represen-
tation theorem, see [BEKS94] and also [BLL13].

δ-interactions on angles. In our first model the support of the δ-interaction
is the set Σϕ ⊂ R2, which consists of two rays meeting at the common origin
and constituting the angle ϕ ∈ (0, π] as in Figure 1.
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Figure 1. The angle Σϕ of degree ϕ ∈ (0, π].

The quadratic form in L2(R2)

(1.1) aϕ[f ] := ‖∇f‖2L2(R2;C2) − α‖f |Σϕ‖2L2(Σϕ), dom aϕ := H1(R2),

is closed, densely defined, symmetric and lower-semibounded, where f |Σϕ is
the trace of f on Σϕ, and the constant α > 0 is called the strength of inter-
action. The corresponding self-adjoint operator in L2(R2) we denote by Aϕ.
Known spectral properties of this operator include explicit representation
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of the essential spectrum σess(Aϕ) = [−α2/4,+∞) and some information
on the discrete spectrum: ]σd(Aϕ) ≥ 1 if and only if ϕ 6= π. These two
statements can be deduced from more general results by Exner and Ichinose
[EI01]. They are complemented by Exner and Nemčová in [EN03] with the
limiting property ]σd(Aϕ)→ +∞ as ϕ→ 0+.

In [LLP10] the author obtained jointly with Igor Lobanov and Igor Yu.
Popov a general result, which implies the lower bound on the spectrum of
Aϕ

(1.2) inf σ(Aϕ) ≥ − α2

4 sin2(ϕ/2)
.

This bound is close to optimal for ϕ close to π, whereas in the limit ϕ→ 0+
the bound tends to−∞. In the present note we sharpen this bound. Namely,
we obtain

(1.3) inf σ(Aϕ) ≥ − α2

(1 + sin(ϕ/2))2
.

The new bound yields that the operatorsAϕ are uniformly lower-semibounded
with respect to ϕ and

inf σ(Aϕ) ≥ −α2

holds for all ϕ ∈ (0, π]. This observation agrees well with physical expec-
tations. Note that separation of variables yields that inf σ(Aπ) = −α2/4
and in this case the lower bound in (1.3) coincides with the exact spectral
bottom.

For sufficiently sharp angles upper bounds on inf σ(Aϕ) were obtained
by Brown, Eastham and Wood in [BEW08]. See also Open Problem 7.3 in
[E08] related to the discrete spectrum of Aϕ for ϕ close to π.

δ-interactions on crossing straight lines. We also consider an analogous
model with the δ-interaction supported on the set Γϕ = Γ1 ∪ Γ2, where Γ1

and Γ2 are two straight lines, which cross at the angle ϕ ∈ (0, π) as in
Figure 2.
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Figure 2. The straight lines Γ1 and Γ2 crossing at the angle
of degree ϕ ∈ (0, π).
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The corresponding self-adjoint operator Bϕ in L2(R2) can be defined via the
closed, densely defined, symmetric and lower-semibounded quadratic form

(1.4) bϕ[f ] := ‖∇f‖2L2(R2;C2) − α‖f |Γϕ‖2L2(Γϕ), dom bϕ := H1(R2),

in L2(R2), where α > 0 is the strength of interaction. According to [EN03]
it is known that σess(Bϕ) = [−α2/4,+∞) and that ]σd(Bϕ) ≥ 1.

In this note we obtain the lower bound

(1.5) inf σ(Bϕ) ≥ − α2

1 + sinϕ
,

using the same method as for the operator Aϕ. Separation of variables yields
inf σ(Bπ/2) = −α2/2, and in this case the lower bound in the estimate (1.5)
coincides with the exact spectral bottom.

Upper bounds on inf σ(Bϕ) were obtained in [BEW08, BEW09]. The
operators of the type Bϕ arise in the one-dimensional quantum three-body
problem after excluding the center of mass, see Cornean, Duclos and Ricaud
[CDR06, CDR08] and the references therein.

We want to stress that our proofs are of elementary nature and we do not
use any reduction to integral operators acting on interaction supports Σϕ

and Γϕ.

2. Sobolev spaces on wedges

In this section Ω ⊂ R2 is a wedge with the angle of degree ϕ ∈ (0, 2π).
The Sobolev space H1(Ω) is defined as usual, see [McL, Chapter 3]. For any
f ∈ H1(Ω) the trace f |∂Ω ∈ L2(∂Ω) is well-defined as in [McL, Chapter 3]
and [M87].

Proposition 2.1. [LP08, Lemma 2.6] Let Ω be a wedge with angle of degree
ϕ ∈ (0, π]. Then for any f ∈ H1(Ω) the estimate

‖∇f‖2L2(Ω;C2) − γ‖f |∂Ω‖2L2(∂Ω) ≥ −
γ2

sin2(ϕ/2)
‖f‖2L2(Ω)

holds for all γ > 0.

Proposition 2.2. [LP08, Lemma 2.8] Let Ω be a wedge with angle of degree
ϕ ∈ (π, 2π). Then for any f ∈ H1(Ω) the estimate

‖∇f‖2L2(Ω;C2) − γ‖f |∂Ω‖2L2(∂Ω) ≥ −γ
2‖f‖2L2(Ω)

holds for all γ > 0.

Propositions 2.1 and 2.2 are variational equivalents of spectral results
from [LP08].
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3. A lower bound on the spectrum of Aϕ

In the next theorem we sharpen the bound (1.2) using only properties of
the Sobolev space H1 on wedges and some optimization.

Theorem 3.1. Let the self-adjoint operator Aϕ be associated with the qua-
dratic form given in (1.1). Then the estimate

inf σ(Aϕ) ≥ − α2(
1 + sin(ϕ/2)

)2
holds.

Proof. The angle Σϕ separates the Euclidean space R2 into two wedges Ω1

and Ω2 with angles of degrees ϕ and 2π − ϕ, see Figure 3.
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Figure 3. The angle Σϕ separates the Euclidean space R2

into two wedges Ω1 and Ω2.

The underlying Hilbert space can be decomposed as

L2(R2) = L2(Ω1)⊕ L2(Ω2).

Any f ∈ dom aϕ can be written as the orthogonal sum f1 ⊕ f2 with respect
to that decomposition of L2(R2). Note that f1 ∈ H1(Ω1) and that f2 ∈
H1(Ω2). Clearly,

‖f‖2L2(R2) = ‖f1‖2L2(Ω1) + ‖f2‖2L2(Ω2),

‖∇f‖2L2(R2;C2) = ‖∇f1‖2L2(Ω1;C2) + ‖∇f2‖2L2(Ω2;C2).
(3.1)

The coupling constant can be decomposed as α = β + (α − β) with some
optimization parameter β ∈ [0, α] and the relation

(3.2) α‖f |Σϕ‖2L2(Σϕ) = β‖f1|∂Ω1‖2L2(∂Ω1) + (α− β)‖f2|∂Ω2‖2L2(∂Ω2).

holds. According to Proposition 2.1

(3.3) ‖∇f1‖2L2(Ω1;C2) − β‖f1|∂Ω1‖2L2(∂Ω1) ≥ −
β2

sin2(ϕ/2)
‖f1‖2L2(Ω1),

and according to Proposition 2.2

(3.4) ‖∇f2‖2L2(Ω2;C2) − (α− β)‖f2|∂Ω2‖2L2(∂Ω2) ≥ −(α− β)2‖f2‖2L2(Ω2).
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The observations (3.1), (3.2) and the estimates (3.3), (3.4) imply

aϕ[f ] ≥ −max
{

β2

sin2(ϕ/2)
, (α− β)2

}
‖f‖2L2(R2).

Making optimization with respect to β, we observe that the maximum be-
tween the two values in the estimate above is minimal, when these two values
coincide. That is

β2

sin2(ϕ/2)
= (α− β)2,

which is equivalent to

(3.5) β = α sin(ϕ/2)
(1+sin(ϕ/2)) ,

resulting in the final estimate

aϕ[f ] ≥ − α2

(1+sin(ϕ/2))2
‖f‖2L2(R2).

This final estimate implies the desired spectral bound. �

Remark 3.2. Note that the previously known lower bound (1.2) comes out
from the proof of the last theorem if we choose β = α/2, which is the optimal
choice in our proof only for ϕ = π as we see from (3.5).

4. A lower bound on the spectrum of Bϕ

In the next theorem we obtain a lower bound on the spectrum of the
self-adjoint operator Bϕ using the same idea as in Theorem 3.1.

Theorem 4.1. Let the self-adjoint operator Bϕ be associated with the qua-
dratic form given in (1.4). Then the estimate

inf σ(Bϕ) ≥ − α2

1 + sinϕ

holds.

Proof. The crossing straight lines Γ1 and Γ2 separate the Euclidean space
R2 into four wedges {Ωk}4k=1. Namely, the wedges Ω1 and Ω2 with angles of
degree ϕ and the wedges Ω3 and Ω4 with angles of degree π−ϕ, see Figure 4.
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Figure 4. The crossing straight lines Γ1 and Γ2 separate
the Euclidean space R2 into four wedges {Ωk}4k=1.
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The underlying Hilbert space can be decomposed as

L2(R2) =
4⊕

k=1

L2(Ωk).

Any f ∈ dom bϕ can be written as the orthogonal sum ⊕4
k=1fk with respect

to that decomposition of L2(R2). Note that fk ∈ H1(Ωk) for k = 1, 2, 3, 4.
Clearly,

(4.1) ‖f‖2L2(R2) =
4∑

k=1

‖fk‖2L2(Ωk), ‖∇f‖2L2(R2;C2) =
4∑

k=1

‖∇fk‖2L2(Ωk;C2).

The coupling constant can be decomposed as α = β + (α − β) with some
optimization parameter β ∈ [0, α] and the relation

α‖f |Γϕ‖2L2(Γϕ) = β‖f1|∂Ω1‖2L2(∂Ω1) + β‖f2|∂Ω2‖2L2(∂Ω2)

+ (α− β)‖f3|∂Ω3‖2L2(∂Ω3) + (α− β)‖f4|∂Ω4‖2L2(∂Ω4)

(4.2)

holds. According to Proposition 2.1

‖∇f1‖2L2(Ω1;C2) − β‖f1|∂Ω1‖2L2(∂Ω1) ≥ −
β2

sin2(ϕ/2)
‖f1‖2L2(Ω1),

‖∇f2‖2L2(Ω2;C2) − β‖f2|∂Ω2‖2L2(∂Ω2) ≥ −
β2

sin2(ϕ/2)
‖f2‖2L2(Ω2).

(4.3)

Also according to Proposition 2.1

‖∇f3‖2L2(Ω3;C2) − (α− β)‖f3|∂Ω3‖2L2(∂Ω3) ≥ −
(α−β)2

cos2(ϕ/2)
‖f3‖2L2(Ω3),

‖∇f4‖2L2(Ω4;C2) − (α− β)‖f4|∂Ω4‖2L2(∂Ω4) ≥ −
(α−β)2

cos2(ϕ/2)
‖f4‖2L2(Ω4).

(4.4)

The observations (4.1), (4.2) and the estimates (4.3), (4.4) imply

bϕ[f ] ≥ −max
{

β2

sin2(ϕ/2)
, (α−β)2

cos2(ϕ/2)

}
‖f‖2L2(R2).

Making optimization with respect to β, we observe that the maximum be-
tween the two values in the estimate above is minimal, when these two values
coincide. That is

β2

sin2(ϕ/2)
= (α−β)2

cos2(ϕ/2)
,

which is equivalent to

(4.5) β = α tan(ϕ/2)
(1+tan(ϕ/2)) ,

resulting in the final estimate

bϕ[f ] ≥ − α2

1+sin(ϕ)‖f‖
2
L2(R2).

This final estimate implies the desired spectral bound. �

Remark 4.2. The result of Theorem 4.1 complements [CDR08, Theorem
4.6 (iv)], where the bound

inf σ(Bϕ) ≥ −α2.

for all ϕ ∈ (0, π) was obtained.
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